L-Arginine and Asymmetric Dimethylarginine Are Early Predictors for Survival in Septic Patients with Acute Liver Failure

نویسندگان

  • Thorsten Brenner
  • Thomas H. Fleming
  • Claudia Rosenhagen
  • Ute Krauser
  • Markus Mieth
  • Thomas Bruckner
  • Eike Martin
  • Peter P. Nawroth
  • Markus A. Weigand
  • Angelika Bierhaus
  • Stefan Hofer
چکیده

Dysfunctions of the L-arginine (L-arg)/nitric-oxide (NO) pathway are suspected to be important for the pathogenesis of multiple organ dysfunction syndrome (MODS) in septic shock. Therefore plasma concentrations of L-arg and asymmetric dimethylarginine (ADMA) were measured in 60 patients with septic shock, 30 surgical patients and 30 healthy volunteers using enzyme linked immunosorbent assay (ELISA) kits. Plasma samples from patients with septic shock were collected at sepsis onset, and 24 h, 4 d, 7 d, 14 d and 28 d later. Samples from surgical patients were collected prior to surgery, immediately after the end of the surgical procedure as well as 24 h later and from healthy volunteers once. In comparison to healthy volunteers and surgical patients, individuals with septic shock showed significantly increased levels of ADMA, as well as a decrease in the ratio of L-arg and ADMA at all timepoints. In septic patients with an acute liver failure (ALF), plasma levels of ADMA and L-arg were significantly increased in comparison to septic patients with an intact hepatic function. In summary it can be stated, that bioavailability of NO is reduced in septic shock. Moreover, measurements of ADMA and L-arg appear to be early predictors for survival in patients with sepsis-associated ALF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring of L-Arginine and Endogenous Dimethylarginines in Survivor Septic Patients - A Pilot Study.

BACKGROUND/AIM Nitric oxide (NO) pathway plays a major role in the development and advancement of inflammation. We aimed to design a study and investigate its feasibility to show the changes of L-arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), which are important regulators of the NO pathway. PATIENTS AND METHODS Concentrations of L-arginine, ADMA and SDMA ...

متن کامل

Asymmetric dimethylarginine (ADMA) as a target for pharmacotherapy.

Asymmetric dimethylarginine (ADMA) is synthesized during the methylation of protein arginine residues by protein arginine methyltransferases (PRMT) and is released during proteolysis. ADMA is a competitive inhibitor of nitric oxide synthase and may decrease NO availability. ADMA is eliminated by renal excretion or is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) to citruline and...

متن کامل

Imbalance of arginine and asymmetric dimethylarginine is associated with markers of circulatory failure, organ failure and mortality in shock patients.

In shock, organ perfusion is of vital importance because organ oxygenation is at risk. NO, the main endothelial-derived vasodilator, is crucial for organ perfusion and coronary patency. The availability of NO might depend on the balance between a substrate (arginine) and an inhibitor (asymmetric dimethylarginine; ADMA) of NO synthase. Therefore, we investigated the relationship of arginine, ADM...

متن کامل

Markers of nitric oxide are associated with sepsis severity: an observational study

BACKGROUND Nitric oxide (NO) regulates processes involved in sepsis progression, including vascular function and pathogen defense. Direct NO measurement in patients is unfeasible because of its short half-life. Surrogate markers for NO bioavailability are substrates of NO generating synthase (NOS): L-arginine (lArg) and homoarginine (hArg) together with the inhibitory competitive substrate asym...

متن کامل

Arginine, citrulline and nitric oxide metabolism in sepsis.

Arginine has vasodilatory effects, via its conversion by NO synthase into NO, and immunomodulatory actions which play important roles in sepsis. Protein breakdown affects arginine availability and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore affect NO synthesis in patients with sepsis. The objective of the present study was to investigate whole-body in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012